Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 13(1): 5586, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2042319

ABSTRACT

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Subject(s)
COVID-19 , Lymphoma , Vaccines , CD8-Positive T-Lymphocytes , COVID-19/therapy , Epitopes, T-Lymphocyte/genetics , Humans , Immunization, Passive , Mutation , Nucleoproteins/genetics , Peptides/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
2.
Virus Genes ; 56(6): 767-771, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1384547

ABSTRACT

In the present work, two complete genome sequences of SARS-CoV-2 were obtained from nasal swab samples of Tunisian SARS-CoV-2 PCR-positive patients using nanopore sequencing. The virus genomes of two of the patients examined, a Tunisian soldier returning from a mission in Morocco and a member of another Tunisian family, showed significant differences in analyses of the total genome and single nucleotide polymorphisms (SNPs). Phylogenetic relationships with known SARS-CoV-2 genomes in the African region, some European and Middle Eastern countries and initial epidemiological conclusions indicate that the introduction of SARS-CoV-2 into Tunisia from two independent sources was travel-related.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/genetics , Adult , Asymptomatic Diseases , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Europe/epidemiology , Female , Hospitals, Military , Humans , Male , Middle Aged , Military Personnel , Morocco/epidemiology , Pedigree , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Travel-Related Illness , Tunisia/epidemiology , Viral Load , Whole Genome Sequencing
3.
mSystems ; 6(4): e0039221, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1338837

ABSTRACT

Controlling and monitoring the still ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic regarding geographical distribution, evolution, and emergence of new mutations of the SARS-CoV-2 virus is only possible due to continuous next-generation sequencing (NGS) and sharing sequence data worldwide. Efficient sequencing strategies enable the retrieval of increasing numbers of high-quality, full-length genomes and are, hence, indispensable. Two opposed enrichment methods, tiling multiplex PCR and sequence hybridization by bait capture, have been established for SARS-CoV-2 sequencing and are both frequently used, depending on the quality of the patient sample and the question at hand. Here, we focused on the evaluation of the sequence hybridization method by studying five commercially available sequence capture bait panels with regard to sensitivity and capture efficiency. We discovered the SARS-CoV-2-specific panel of Twist Bioscience to be the most efficient panel, followed by two respiratory panels from Twist Bioscience and Illumina, respectively. Our results provide on the one hand a decision basis for the sequencing community including a computation for using the full capacity of the flow cell and on the other hand potential improvements for the manufacturers. IMPORTANCE Sequencing the genomes of the circulating SARS-CoV-2 strains is the only way to monitor the viral spread and evolution of the virus. Two different approaches, namely, tiling multiplex PCR and sequence hybridization by bait capture, are commonly used to fulfill this task. This study describes for the first time a combined approach of droplet digital PCR (ddPCR) and NGS to evaluate five commercially available sequence capture panels targeting SARS-CoV-2. In doing so, we were able to determine the most sensitive and efficient capture panel, distinguish the mode of action of the various bait panels, and compute the number of read pairs needed to recover a high-quality full-length genome. By calculating the minimum number of read pairs needed, we are providing optimized flow cell loading conditions for all sequencing laboratories worldwide that are striving for maximizing sequencing output and simultaneously minimizing time, costs, and sequencing resources.

4.
Viruses ; 12(11)2020 11 02.
Article in English | MEDLINE | ID: covidwho-976360

ABSTRACT

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occurring in the Wuhan region of China in December 2019. From China, the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on March 2, 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequencing data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates, from which 21 whole genome sequences were generated. Our analysis shows that both the early A (19B) and the later observed B (20A/C) clade are present in Mali, indicating multiple and independent introductions of SARS-CoV-2 to the Sahel region.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral/genetics , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Child , Child, Preschool , Female , Genetic Variation/genetics , Genomics , Humans , Male , Mali/epidemiology , Middle Aged , Pandemics , Phylogeny , SARS-CoV-2 , Whole Genome Sequencing , Young Adult
5.
Viruses ; 12(11):1251, 2020.
Article in English | MDPI | ID: covidwho-896394

ABSTRACT

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occurring in the Wuhan region of China in December 2019. From China, the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on March 2, 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequencing data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates, from which 21 whole genome sequences were generated. Our analysis shows that both the early A (19B) and the later observed B (20A/C) clade are present in Mali, indicating multiple and independent introductions of SARS-CoV-2 to the Sahel region.

SELECTION OF CITATIONS
SEARCH DETAIL